

MOIRÉ SUPPORTED STRESS DISTRIBUTION STUDY ON GEARS

Prof. Inacio Maria Dal Fabbro.

Authors Dafine Villa Santos Jonathan Gazzola Inácio Maria Dal Fabbro Marcos Valério Gebra Silva

Introduction

Objective

✓ Use of phase-shifting *moiré* technique to determine stress in gears on different situations of loading (Cleaned, lubrificated and comtamined).

Importance

✓ Comprehension of stress distribution on different situations of loading.

✓ Improvement of gears design applied to farm machinery.

Concepts

Photomechanical Techniques

Displacement field is obtained through interferometrical waves propagation differentiated under loading applying.

Holography

Moiré Technique

Interferometrical Speckle

Concepts Moiré Phenomenology

Phenomenon generated when screens of certain mesh density are superposed, producing waves like patterns or fringes, which move when its relative positions are displaced

Materials and Methods

✓ SAMSUNG digital camera 7.1 mega pixels with remote control

- \checkmark White light source.
- \checkmark Ronchi grids of 0.4 mm of period.
- \checkmark Wooden beam painted with white opaque color.

Image Caption

Non loaded and loaded image are taken by digital camera

Materials and Methods

PHOTOMECHANICAL TEST

Image Processing

- Image conversion colored to 8 bit scale (ImageJ software)

Colored Image

8 Bit Image

Image Processing –Image Selection

- Selection of studied area (ImageJ software): Line contour.

Selected area with background

Selected area without background

FEAGRI

Image Processing – Mask Formation

Binary Coloration

$0 \rightarrow Background$ (White)

 $1 \rightarrow$ Selected Area (Red)

Image Processing – Image Selection

- Selection of studied area (ImageJ software)

8 Bit Image

Image Processing – Image Selection

- Selection of studied area (ImageJ software)

Selected area

Image Processing – Image Filtration

- Filtration of image (Improvement of fringe contrast)
- ✓ Gaussian Blur Filter

Image Processing – Stress Mapping

Isochromatical Fringes obtained through Idrisi Kilimanjaro software processing by *moiré* fringes differentiation

Isoclinical and isochromatical lines formation – Result obtained through ImageJ software processing

Isodeformation maps of clean gears loaded

05 kgf

10 kgf

Isodeformation maps of lubrificated gears loaded

-46

-41

-36

-31

-26

-21

-16

-11

-7

-2

3

8

13

18

23 28 33

05 kgf

30 kgf

Isodeformation maps of contaminated gears loaded

30 kgf

Isoclinics and isochromatics curves for clean gears loaded

05 kgf

10 kgf

30 kgf

Isoclinics and isochromatics curves for lubrificated gears loaded

05 kgf

30 kgf

Results

Isoclinics and isochromatics curves for contaminated gears loaded

05 kgf

10 kgf

FEAGRI

Discussions

 \checkmark As loading increased isochromatic fringes spacing decreased, tending to occupy the whole observed area. Fringes distribution density indicates stress concentration.

 \checkmark Fringes concentrations were initially positioned at gears tooth top and bottom.

✓ Fringes concentration moved to tooth border, following, to gear central areas.

 \checkmark Low material density areas, as tooth region, experienced high fringes concentration.

 \checkmark Clean gear presented the lowest fringe slop, followed by lubricated gear and finally by the lubricated dirty gear.

✓ Lubricated gears presented the best load distribution, and the lowest deformation variation..

✓ Contaminated gears presented stress concentration and stress intensity variation as well as deformation were shown to be higher, indicating decreasing element working life.

 \checkmark The results are considered very useful, since the working conditions of farm machinery are severe.

